Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trials ; 24(1): 696, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898759

RESUMO

BACKGROUND: The SafeBoosC project aims to test the clinical value of non-invasive cerebral oximetry by near-infrared spectroscopy in newborn infants. The purpose is to establish whether cerebral oximetry can be used to save newborn infants' lives and brains or not. Newborns contribute heavily to total childhood mortality and neonatal brain damage is the cause of a large part of handicaps such as cerebral palsy. The objective of the SafeBoosC-IIIv trial is to evaluate the benefits and harms of cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. METHODS/DESIGN: SafeBoosC-IIIv is an investigator-initiated, multinational, randomised, pragmatic phase-III clinical trial. The inclusion criteria will be newborns with a gestational age more than 28 + 0 weeks, postnatal age less than 28 days, predicted to require mechanical ventilation for at least 24 h, and prior informed consent from the parents or deferred consent or absence of opt-out. The exclusion criteria will be no available cerebral oximeter, suspicion of or confirmed brain injury or disorder, or congenital heart disease likely to require surgery. A total of 3000 participants will be randomised in 60 neonatal intensive care units from 16 countries, in a 1:1 allocation ratio to cerebral oximetry versus usual care. Participants in the cerebral oximetry group will undergo cerebral oximetry monitoring during mechanical ventilation in the neonatal intensive care unit for as long as deemed useful by the treating physician or until 28 days of life. The participants in the cerebral oximetry group will be treated according to the SafeBoosC treatment guideline. Participants in the usual care group will not receive cerebral oximetry and will receive usual care. We use two co-primary outcomes: (1) a composite of death from any cause or moderate to severe neurodevelopmental disability at 2 years of corrected age and (2) the non-verbal cognitive score of the Parent Report of Children's Abilities-Revised (PARCA-R) at 2 years of corrected age. DISCUSSION: There is need for a randomised clinical trial to evaluate cerebral oximetry added to usual care versus usual care in mechanically ventilated newborns. TRIAL REGISTRATION: The protocol is registered at www. CLINICALTRIALS: gov (NCT05907317; registered 18 June 2023).


Assuntos
Oximetria , Respiração Artificial , Lactente , Criança , Recém-Nascido , Humanos , Oximetria/métodos , Respiração Artificial/efeitos adversos , Circulação Cerebrovascular , Encéfalo , Unidades de Terapia Intensiva Neonatal , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
Trials ; 24(1): 653, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805539

RESUMO

BACKGROUND: In the SafeBoosC-III trial, treatment guided by cerebral oximetry monitoring for the first 72 hours after birth did not reduce the incidence of death or severe brain injury in extremely preterm infants at 36 weeks' postmenstrual age, as compared with usual care. Despite an association between severe brain injury diagnosed in the neonatal period and later neurodevelopmental disability, this relationship is not always strong. The objective of the SafeBoosC-III follow-up study is to assess mortality, neurodevelopmental disability, or any harm in trial participants at 2 years of corrected age. One important challenge is the lack of funding for local costs for a trial-specific assessment. METHODS: Of the 1601 infants randomised in the SafeBoosC-III trial, 1276 infants were alive at 36 weeks' postmenstrual age and will potentially be available for the 2-year follow-up. Inclusion criteria will be enrollment in a neonatal intensive care unit taking part in the follow-up study and parental consent if required by local regulations. We aim to collect data from routine follow-up programmes between the ages of 18 and 30 months of corrected age. If no routine follow-up has been conducted, we will collect informal assessments from other health care records from the age of at least 12 months. A local co-investigator blinded to group allocation will classify outcomes based on these records. We will supplement this with parental questionnaires including the Parent Report of Children's Abilities-Revised. There will be two co-primary outcomes: the composite of death or moderate or severe neurodevelopmental disability and mean Bayley-III/IV cognitive score. We will use a 3-tier model for prioritisation, based on the quality of data. This approach has been chosen to minimise loss to follow-up assuming that little data is better than no data at all. DISCUSSION: Follow-up at the age of 2 years is important for intervention trials in the newborn period as only time can show real benefits and harms later in childhood. To decrease the risk of generalisation and data-driven biased conclusions, we present a detailed description of the methodology for the SafeBoosC-III follow-up study. As funding is limited, a pragmatic approach is necessary. TRIAL REGISTRATION: ClinicalTrials.gov NCT05134116 . Registered on 24 November 2021.


Assuntos
Lesões Encefálicas , Lactente Extremamente Prematuro , Lactente , Criança , Recém-Nascido , Humanos , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Oximetria/métodos , Seguimentos , Circulação Cerebrovascular , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
N Engl J Med ; 388(16): 1501-1511, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37075142

RESUMO

BACKGROUND: The use of cerebral oximetry monitoring in the care of extremely preterm infants is increasing. However, evidence that its use improves clinical outcomes is lacking. METHODS: In this randomized, phase 3 trial conducted at 70 sites in 17 countries, we assigned extremely preterm infants (gestational age, <28 weeks), within 6 hours after birth, to receive treatment guided by cerebral oximetry monitoring for the first 72 hours after birth or to receive usual care. The primary outcome was a composite of death or severe brain injury on cerebral ultrasonography at 36 weeks' postmenstrual age. Serious adverse events that were assessed were death, severe brain injury, bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, and late-onset sepsis. RESULTS: A total of 1601 infants underwent randomization and 1579 (98.6%) were evaluated for the primary outcome. At 36 weeks' postmenstrual age, death or severe brain injury had occurred in 272 of 772 infants (35.2%) in the cerebral oximetry group, as compared with 274 of 807 infants (34.0%) in the usual-care group (relative risk with cerebral oximetry, 1.03; 95% confidence interval, 0.90 to 1.18; P = 0.64). The incidence of serious adverse events did not differ between the two groups. CONCLUSIONS: In extremely preterm infants, treatment guided by cerebral oximetry monitoring for the first 72 hours after birth was not associated with a lower incidence of death or severe brain injury at 36 weeks' postmenstrual age than usual care. (Funded by the Elsass Foundation and others; SafeBoosC-III ClinicalTrials.gov number, NCT03770741.).


Assuntos
Lactente Extremamente Prematuro , Doenças do Prematuro , Oximetria , Humanos , Lactente , Recém-Nascido , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/etiologia , Displasia Broncopulmonar/etiologia , Circulação Cerebrovascular , Doenças do Prematuro/diagnóstico , Doenças do Prematuro/mortalidade , Doenças do Prematuro/terapia , Oximetria/métodos , Cérebro , Ultrassonografia , Retinopatia da Prematuridade/etiologia , Enterocolite Necrosante/etiologia , Sepse Neonatal/etiologia
4.
Front Pediatr ; 9: 647880, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322460

RESUMO

Objective: To evaluate if the number of admitted extremely preterm (EP) infants (born before 28 weeks of gestational age) differed in the neonatal intensive care units (NICUs) of the SafeBoosC-III consortium during the global lockdown when compared to the corresponding time period in 2019. Design: This is a retrospective, observational study. Forty-six out of 79 NICUs (58%) from 17 countries participated. Principal investigators were asked to report the following information: (1) Total number of EP infant admissions to their NICU in the 3 months where the lockdown restrictions were most rigorous during the first phase of the COVID-19 pandemic, (2) Similar EP infant admissions in the corresponding 3 months of 2019, (3) the level of local restrictions during the lockdown period, and (4) the local impact of the COVID-19 lockdown on the everyday life of a pregnant woman. Results: The number of EP infant admissions during the first wave of the COVID-19 pandemic was 428 compared to 457 in the corresponding 3 months in 2019 (-6.6%, 95% CI -18.2 to +7.1%, p = 0.33). There were no statistically significant differences within individual geographic regions and no significant association between the level of lockdown restrictions and difference in the number of EP infant admissions. A post-hoc analysis based on data from the 46 NICUs found a decrease of 10.3%in the total number of NICU admissions (n = 7,499 in 2020 vs. n = 8,362 in 2019). Conclusion: This ad hoc study did not confirm previous reports of a major reduction in the number of extremely pretermbirths during the first phase of the COVID-19 pandemic. Clinical Trial Registration: ClinicalTrial.gov, identifier: NCT04527601 (registered August 26, 2020), https://clinicaltrials.gov/ct2/show/NCT04527601.

5.
Trials ; 20(1): 746, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856902

RESUMO

BACKGROUND: Infants born extremely preterm are at high risk of dying or suffering from severe brain injuries. Treatment guided by monitoring of cerebral oxygenation may reduce the risk of death and neurologic complications. The SafeBoosC III trial evaluates the effects of treatment guided by cerebral oxygenation monitoring versus treatment as usual. This article describes the detailed statistical analysis plan for the main publication, with the aim to prevent outcome reporting bias and data-driven analyses. METHODS/DESIGN: The SafeBoosC III trial is an investigator-initiated, randomised, multinational, pragmatic phase III trial with a parallel group structure, designed to investigate the benefits and harms of treatment based on cerebral near-infrared spectroscopy monitoring compared with treatment as usual. Randomisation will be 1:1 stratified for neonatal intensive care unit and gestational age (lower gestational age (< 26 weeks) compared to higher gestational age (≥ 26 weeks)). The primary outcome is a composite of death or severe brain injury at 36 weeks postmenstrual age. Primary analysis will be made on the intention-to-treat population for all outcomes, using mixed-model logistic regression adjusting for stratification variables. In the primary analysis, the twin intra-class correlation coefficient will not be considered. However, we will perform sensitivity analyses to address this. Our simulation study suggests that the inclusion of multiple births is unlikely to significantly affect our assessment of intervention effects, and therefore we have chosen the analysis where the twin intra-class correlation coefficient will not be considered as the primary analysis. DISCUSSION: In line with the Declaration of Helsinki and the International Conference on Harmonization Good Clinical Practice guidelines, we have developed and published this statistical analysis plan for the SafeBoosC III trial, prior to any data analysis. TRIAL REGISTRATION: ClinicalTrials.org, NCT03770741. Registered on 10 December 2018.


Assuntos
Encéfalo/diagnóstico por imagem , Tratamento de Emergência/métodos , Hipóxia Encefálica/terapia , Lactente Extremamente Prematuro , Monitorização Fisiológica/métodos , Oxigênio/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ensaios Clínicos Fase III como Assunto , Humanos , Hipóxia Encefálica/diagnóstico , Hipóxia Encefálica/epidemiologia , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Monitorização Fisiológica/instrumentação , Estudos Multicêntricos como Assunto , Ensaios Clínicos Pragmáticos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Trials ; 20(1): 811, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888764

RESUMO

BACKGROUND: Cerebral oxygenation monitoring may reduce the risk of death and neurologic complications in extremely preterm infants, but no such effects have yet been demonstrated in preterm infants in sufficiently powered randomised clinical trials. The objective of the SafeBoosC III trial is to investigate the benefits and harms of treatment based on near-infrared spectroscopy (NIRS) monitoring compared with treatment as usual for extremely preterm infants. METHODS/DESIGN: SafeBoosC III is an investigator-initiated, multinational, randomised, pragmatic phase III clinical trial. Inclusion criteria will be infants born below 28 weeks postmenstrual age and parental informed consent (unless the site is using 'opt-out' or deferred consent). Exclusion criteria will be no parental informed consent (or if 'opt-out' is used, lack of a record that clinical staff have explained the trial and the 'opt-out' consent process to parents and/or a record of the parents' decision to opt-out in the infant's clinical file); decision not to provide full life support; and no possibility to initiate cerebral NIRS oximetry within 6 h after birth. Participants will be randomised 1:1 into either the experimental or control group. Participants in the experimental group will be monitored during the first 72 h of life with a cerebral NIRS oximeter. Cerebral hypoxia will be treated according to an evidence-based treatment guideline. Participants in the control group will not undergo cerebral oxygenation monitoring and will receive treatment as usual. Each participant will be followed up at 36 weeks postmenstrual age. The primary outcome will be a composite of either death or severe brain injury detected on any of the serial cranial ultrasound scans that are routinely performed in these infants up to 36 weeks postmenstrual age. Severe brain injury will be assessed by a person blinded to group allocation. To detect a 22% relative risk difference between the experimental and control group, we intend to randomise a cohort of 1600 infants. DISCUSSION: Treatment guided by cerebral NIRS oximetry has the potential to decrease the risk of death or survival with severe brain injury in preterm infants. There is an urgent need to assess the clinical effects of NIRS monitoring among preterm neonates. TRIAL REGISTRATION: ClinicalTrial.gov, NCT03770741. Registered 10 December 2018.


Assuntos
Cérebro/diagnóstico por imagem , Hipóxia Encefálica/diagnóstico por imagem , Lactente Extremamente Prematuro , Monitorização Fisiológica/métodos , Oximetria/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Feminino , Idade Gestacional , Humanos , Hipóxia Encefálica/prevenção & controle , Recém-Nascido , Masculino
7.
Neonatology ; 110(4): 270-276, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322828

RESUMO

BACKGROUND: Therapeutic hypothermia is presumed to suppress inflammatory processes after perinatal asphyxia. In a previous study of neonatal hypoxic-ischemic encephalopathy (HIE) we found altered skin microcirculation in about a third of the infants after rewarming. We speculated whether this could be linked to increased inflammatory responses, such as high C-reactive protein (CRP). The present study further explored this question. OBJECTIVE: The aim of this study was to explore the differences in skin microcirculation and its oxygen delivery ability during cooling and after rewarming in HIE infants with or without high CRP. METHODS: A previously studied population of 28 HIE infants was divided into two subgroups depending on low or high CRP (repeated values above 30 mg/l for more than 24 h). The differences between the two groups regarding laser Doppler perfusion measurements (LDPMs), computer-assisted video microscopy and diffuse reflectance spectroscopies during cooling on days 1 and 3 and after rewarming on day 4 were assessed. RESULTS: After rewarming, infants with high CRP showed significantly higher skin LDPM perfusion, lower functional vessel density and larger heterogeneity of capillary flow velocities as compared to infants with low CRP, while no such differences were found during cooling. CONCLUSION: Skin microcirculatory responses differed significantly after rewarming, but not during cooling, between asphyxiated neonates with or without high CRP. We speculate whether cooling influences the inflammatory skin microcirculatory response and the ability of oxygen delivery to the cells. Further studies are needed to investigate this as well as its applicability to other vascular beds in the body.


Assuntos
Asfixia Neonatal/terapia , Proteína C-Reativa/análise , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Pele/irrigação sanguínea , Biomarcadores , Eletroencefalografia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/prevenção & controle , Recém-Nascido , Fluxometria por Laser-Doppler , Masculino , Microcirculação , Noruega , Reaquecimento/métodos , Fatores de Tempo
8.
Pediatr Res ; 79(6): 902-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26854800

RESUMO

BACKGROUND: Therapeutic hypothermia (TH) has become standard treatment for severe and moderate hypoxic-ischemic neonatal encephalopathy (HIE). Our group has developed an optically based, noninvasive concept of assessing the capacity for oxygen delivery from the microcirculation to the cells of a tissue under investigation. The hypothesis was that mechanisms of reduced oxygen delivery due to reduced metabolism in cooled asphyxiated neonates could be characterized with this concept. METHODS: The skin of 28 asphyxiated newborn infants was studied on days 1 and 3 during TH and on day 4 following rewarming with laser Doppler perfusion measurements (LDPM), computer-assisted video microscopy (CAVM), and diffuse reflectance spectroscopy (DRS). Twenty-five healthy neonates served as a control group. RESULTS: The LDPM decreased during cooling (P < 0.01). Functional capillary density was higher both during and following TH compared with control infants (P < 0.01). Capillary flow velocities were reduced during TH (P < 0.05). The heterogeneity of the flow velocities was larger in the HIE infants than in the control infants. Tissue oxygen extraction was higher during TH (P < 0.01). CONCLUSION: This study indicates that assessments of skin microvascular density, capillary flow velocity, and oxygen extraction can be used to characterize reduced oxygen delivery to cells during TH.


Assuntos
Asfixia Neonatal/terapia , Hipotermia Induzida , Hipóxia-Isquemia Encefálica/terapia , Microcirculação , Oxigênio/uso terapêutico , Estudos de Casos e Controles , Feminino , Humanos , Recém-Nascido , Masculino , Perfusão , Estudos Prospectivos , Pele/irrigação sanguínea
9.
Clin Hemorheol Microcirc ; 59(4): 309-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24002120

RESUMO

UNLABELLED: Despite microcirculation's fundamental role, assessments of its function are limited. We explored the applicability of Computer Assisted Video Microscope (CAVM), Laser Doppler Perfusion Measurements (LDPM) and Diffuse Reflectance Spectroscopy (DRS) to study skin microvascular morphology, perfusion and oxygen saturation in twenty-five healthy newborns day 1-3 of life. RESULTS: Day 1-3 (mean (SD)): Microvascular density (CAVM; number of microvessels crossing a grid of lines/mm line, c/mm): Chest: 11.3 (1.5), 11.0 (1.7), 10.7 (1.6). Hand: 13.2 (2.0), 13.2 (1.9), 12.4 (1.6). Capillary density was significantly higher in the hand than in the chest each day (p <  0.001). Perfusion (LDPM; arbitrary units): Chest: 109.1 (26.0), 101.4 (24.6), 100.8 (25.3). Hand: 58.9 (17.5), 54.3 (15.8), 46.9 (14.8). Perfusion was significantly higher in the chest than in the hand each day (p <  0.01). Microvascular oxygen saturation (DRS; %): Chest: 88.1 (5.2), 87.8 (10.0), 86.7 (9.0). Hand: 79.9 (15.2), 82.7 (11.8), 82.2 (12.1) (p <  0.05). Capillary flow velocities (CAVM) were similar in the chest and hand: 60-70% capillaries had "continuous high flow" and 30-40% "continuous low flow".Multimodal skin microvascular assessments with CAVM, LDPM and DRS are feasible with reproducible data in newborns. The hand has lower perfusion, higher capillary density and higher oxygen extraction than the chest.


Assuntos
Recém-Nascido/fisiologia , Microcirculação/fisiologia , Pele/irrigação sanguínea , Feminino , Feto/irrigação sanguínea , Humanos , Processamento de Imagem Assistida por Computador , Fluxometria por Laser-Doppler , Masculino , Microscopia de Vídeo , Microvasos , Oxigênio/análise , Testes Imediatos , Valores de Referência , Fluxo Sanguíneo Regional , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...